General announcements

Center of Mass

The center of mass of a system of masses (or a single mass) is located at *the weighted average position of the system's mass*. *Example:* a basketball: *Example:* a horse shoe: *Example:* multiple masses:

A center of mass coordinate must be relative to a coordinate axis. In the x-direction, the numerical value, being a weighted coordinate, is defined such that:

$$
m_{\text{total}}x_{\text{cm}} = m_1x_1 + m_2x_2 + m_3x_3 + \dots
$$

\n
$$
m_1 \qquad m_2 \qquad m_3
$$

\n
$$
2 \qquad m_3
$$

\n
$$
2 \qquad m_1
$$

\n
$$
m_2 \qquad m_3
$$

\n
$$
x_1 \qquad x_2 \qquad x_3
$$

\n
$$
x_3 \qquad x_4
$$

\n
$$
m_1 \qquad m_2 \qquad m_3
$$

\n
$$
x_1 \qquad x_2 \qquad x_3 \qquad x_4
$$

coordinate becomes:

$$
x_{\rm cm}=\frac{\displaystyle\sum_{i=1}^n m_i x_i}{M}
$$

Example 7: Consider two masses "m" and "3m" located a distance 1.0 meters apart. Relative to the coordinate axes used:

a.) What is the x-coordinate of the system's center of mass?

$$
x_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}
$$

= $\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$
= $\frac{(3m)(-.5) + (m)(.5)}{3m + m}$
= -.25 meters

Cont'*d:* Consider two masses "m" and "3m" located a distance 1.0 meters apart. Relative to the coordinate axes used:

y

b.) What is the x-coordinate of the system's center of mass?

$$
x_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}
$$

= $\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$
= $\frac{(3m)(.5) + (m)(1.5)}{3m + m}$
= .75 meters

Bottom line: A system's *center of mass* is identified as a coordinate relative to a coordinate system.

3 m m

 $x_1 = .5$ x_1

 $x_{\rm cm} = .75$

 $x_1 = 1.5$

x

Center of mass in three dimensional situations: \Rightarrow X_{cm} = $Mx_{cm} = m_1x_1 + m_2x_2 + m_3x_3 + ...$ $Mx_{cm} = M$ $My_{cm} = m_1y_1 + m_2y_2 + m_3y_3 + ...$ $\Rightarrow y_{\rm cm} = \frac{1}{12}$ $m_i y_i$ n ∑ M

$$
Mz_{cm} = m_1z_1 + m_2z_2 + m_3z_3 + \dots
$$

$$
\vec{r}_{cm} = x_{cm}\hat{i} + y_{cm}\hat{j} + z_{cm}\hat{k}
$$
\n
$$
= \frac{(\sum m_i x_i)\hat{i} + (\sum m_i y_i)\hat{j} + (\sum m_i x_i)\hat{k}}{M}
$$
\n
$$
= \frac{\sum m_i \vec{r}_i}{M}
$$

 \sum m_ix_i

n

 \Rightarrow Z_{cm}

=

 $\frac{1}{\text{min}}$

 $\sum m_i z_i$

M

i=1

n

Example 8: Determine
\nthe coordinate of the center of
\nmass for the system shown.
\n
$$
x_{cm} = \frac{(2m)(d) + (5m)(d + b)}{2m + m + 4m} = \frac{7(d) + (5)(b)}{7}
$$
\n
$$
= d + \frac{5}{7}b
$$
\n
$$
y_{cm} = \frac{(2m)(0) + (m)(0) + (4m)(h)}{2m + m + 4m}
$$
\n
$$
= \frac{4}{7}h
$$
\n
$$
\Rightarrow \vec{r}_{cm} = (d + \frac{5}{7}b)^{\frac{2}{3} + (\frac{4}{7}h)^{\frac{2}{3}}}
$$

So before we get into the hard stuff, let's review what we are really being asked to do with center of mass calculations.

To determine a center of mass coordinate along a particular axis:

--Move from the origin outward along the axis until you find some mass. --Multiply the mass by its coordinate.

--Continue doing this, adding the products as you go.

--Once you've covered all the mass in the system, normalize the sum by dividing by the total mass.

That will give you the center of mass coordinate along that axis.

As long as an object's *center of mass* is located over a point of support, it will be stable.

The Making of "Balancing Act"

Video example!

Calculate the center of mass of the system BEFORE

watching the video. The video and see where the video. The video and see where boys end up

Nest's mass = 32 \pm

0_m

© 2014 Peter Bohacek ISD 197

Carl's mass = 45 ± 1 kg

Example

- There is a meter stick at the front of the class with masses taped at two different points on the meter stick. Determine the center of mass for the object.
	- Remember to define your $x = 0$ point clearly!