## General announcements

Center of Mass

The center of mass of a system of masses (or a single mass) is located atthe weighted average position of the system's mass.Example: a basketball:Example: a horse shoe:Example: multiple masses:







A center of mass coordínate must be relative to a coordinate axis. In the x-direction, the numerical value, being a weighted coordinate, is defined such that:

$$m_{total}x_{cm} = m_1x_1 + m_2x_2 + m_3x_3 + \dots$$

$$m_1 \qquad m_2 \qquad m_3$$

$$x_1 \qquad x_2 \qquad x_3 \qquad x$$

$$m_1 \qquad m_2 \qquad m_3$$

$$x_1 \qquad x_2 \qquad x_3 \qquad x$$

$$x_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}$$

**Example 7:** Consider two masses "m" and "3m" located a distance 1.0 meters apart. Relative to the coordinate axes used:

*a.*) What is the x-coordinate of the system's center of mass?

$$\mathbf{x}_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}$$
  
=  $\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$   
=  $\frac{(3m)(-.5) + (m)(.5)}{3m + m}$   
= -.25 meters



*Cont'd*: Consider two masses "m" and "3m" located a distance 1.0 meters apart. Relative to the coordinate axes used:

3 m

 $x_1 = .5$ 

 $x_{cm} = .75$ 

(b.) What is the x-coordinate of the system's center of mass?

$$\mathbf{x}_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}$$
  
=  $\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$   
=  $\frac{(3m)(.5) + (m)(1.5)}{3m + m}$   
= .75 meters

**Bottom líne:** A system's *center of mass* is identified as a coordinate relative to a coordinate system.

m

 $x_1 = 1.5$ 

х

Center of mass in three dimensional situations:

$$Mx_{cm} = m_1 x_1 + m_2 x_2 + m_3 x_3 + \dots$$

$$My_{cm} = m_1y_1 + m_2y_2 + m_3y_3 + \dots$$

$$Mz_{cm} = m_1 z_1 + m_2 z_2 + m_3 z_3 + \dots$$

$$\vec{\mathbf{r}}_{cm} = x_{cm}\hat{\mathbf{i}} + y_{cm}\hat{\mathbf{j}} + z_{cm}\hat{\mathbf{k}}$$

$$= \frac{\left(\sum m_i x_i\right)\hat{\mathbf{i}} + \left(\sum m_i y_i\right)\hat{\mathbf{j}} + \left(\sum m_i x_i\right)\hat{\mathbf{k}}}{M}$$

$$= \frac{\sum m_i \vec{\mathbf{r}}_i}{M}$$

ons:  

$$\Rightarrow x_{cm} = \frac{\sum_{i=1}^{n} m_i x_i}{M}$$

$$\Rightarrow y_{cm} = \frac{\sum_{i=1}^{n} m_i y_i}{M}$$

$$\Rightarrow z_{cm} = \frac{\sum_{i=1}^{n} m_i z_i}{M}$$

Example 8: Determine  
the coordinate of the center of  
mass for the system shown.  

$$x_{cm} = \frac{(2pn)(d) + (5pn)(d+b)}{2pn + pn + 4pn}$$

$$= \frac{7(d) + (5)(b)}{7}$$

$$= d + \frac{5}{7}b$$

$$y_{cm} = \frac{(2m)(0) + (m)(0) + (4pn)(h)}{2pn + pn + 4pn}$$

$$= \frac{4}{7}h$$

$$\Rightarrow \vec{r}_{cm} = \left(d + \frac{5}{7}b\right)\hat{i} + \left(\frac{4}{7}h\right)\hat{j}$$

So before we get into the hard stuff, let's review what we are really being asked to do with center of mass calculations.

To determine a center of mass coordinate along a particular axis:

--Move from the origin outward along the axis until you find some mass. --Multiply the mass by its coordinate.

--Continue doing this, adding the products as you go.

--Once you've covered all the mass in the system, normalize the sum by dividing by the total mass.

That will give you the center of mass coordinate along that axis.

## As long as an object's *center of mass* is located over a point of support, it will be stable.





## The Making of "Balancing Act"



Vídeo example!

## • Calculate the center of mass of the system BEFORE

No the

Two Skaters and a Long Pole

Vest's mass = 32 ±

0m

Direct Meausurement Video © 2014 Peter Bohacek ISD 197

Carl's mass =  $45 \pm 1$  kg

Example

- There is a meter stick at the front of the class with masses taped at two different points on the meter stick. Determine the center of mass for the object.
  - Remember to define your x = 0 point clearly!